Search results for "Wear debris"

showing 2 items of 2 documents

Viscoelastic material models for more accurate polyethylene wear estimation

2018

Wear debris from ultra-high-molecular-weight polyethylene components used for joint replacement prostheses can cause significant clinical complications, and it is essential to be able to predict implant wear accurately in vitro to prevent unsafe implant designs continuing to clinical trials. The established method to predict wear is simulator testing, but the significant equipment costs, experimental time and equipment availability can be prohibitive. It is possible to predict implant wear using finite element methods, though those reported in the literature simplify the material behaviour of polyethylene and typically use linear or elastoplastic material models. Such models cannot represe…

Materials scienceJoint replacementmedicine.medical_treatmentWear debris02 engineering and technologyfractional viscoelasticityViscoelasticityModeling and simulationchemistry.chemical_compound0203 mechanical engineeringmedicineMechanics of MaterialUnicompartmental knee arthroplastymaterial modelbusiness.industryApplied MathematicsMechanical EngineeringStructural engineeringPolyethylene021001 nanoscience & nanotechnologyStrength of materialsfinite element analysiFinite element method020303 mechanical engineering & transportschemistryMechanics of MaterialsPolyethylene wearModeling and Simulation0210 nano-technologybusinessunicompartmental knee arthroplasty
researchProduct

The effects of metal implants on inflammatory and healing processes

2007

Abstract Metal implants are known for their superior mechanical properties. However, cases of implant failure mainly due to aseptic loosening do occur. The formation of particulate wear debris and corrosion products, such as metal ions and reactive oxygen species, are considered to be crucial factors leading to the failure of metal implants. These metal degradation and corrosion products can induce inflammatory responses, mediated among others by neutrophils, macrophages and endothelial cells. Furthermore, these degradation products may affect blood vessel formation, one of the central processes in wound healing after implantation. Such events can lead to the aseptic loosening of implants c…

Materials scienceMetallurgyWear debrisMetals and AlloysAseptic looseningImplant failureInflammationCondensed Matter PhysicsCorrosionMetalvisual_artMaterials Chemistryvisual_art.visual_art_mediumBiophysicsmedicinePhysical and Theoretical Chemistrymedicine.symptomWound healingInternational Journal of Materials Research
researchProduct